Nonlinear Effect of Dispersal Rate on Spatial Synchrony of Predator-Prey Cycles
نویسندگان
چکیده
Spatially-separated populations often exhibit positively correlated fluctuations in abundance and other population variables, a phenomenon known as spatial synchrony. Generation and maintenance of synchrony requires forces that rapidly restore synchrony in the face of desynchronizing forces such as demographic and environmental stochasticity. One such force is dispersal, which couples local populations together, thereby synchronizing them. Theory predicts that average spatial synchrony can be a nonlinear function of dispersal rate, but the form of the dispersal rate-synchrony relationship has never been quantified for any system. Theory also predicts that in the presence of demographic and environmental stochasticity, realized levels of synchrony can exhibit high variability around the average, so that ecologically-identical metapopulations might exhibit very different levels of synchrony. We quantified the dispersal rate-synchrony relationship using a model system of protist predator-prey cycles in pairs of laboratory microcosms linked by different rates of dispersal. Paired predator-prey cycles initially were anti-synchronous, and were subject to demographic stochasticity and spatially-uncorrelated temperature fluctuations, challenging the ability of dispersal to rapidly synchronize them. Mean synchrony of prey cycles was a nonlinear, saturating function of dispersal rate. Even extremely low rates of dispersal (<0.4% per prey generation) were capable of rapidly bringing initially anti-synchronous cycles into synchrony. Consistent with theory, ecologically-identical replicates exhibited very different levels of prey synchrony, especially at low to intermediate dispersal rates. Our results suggest that even the very low rates of dispersal observed in many natural systems are sufficient to generate and maintain synchrony of cyclic population dynamics, at least when environments are not too spatially heterogeneous.
منابع مشابه
When can dispersal synchronize populations?
While spatial synchrony of oscillating populations has been observed in many ecological systems, the causes of this phenomenon are still not well understood. The most common explanations have been the Moran effect (synchronous external stochastic influences) and the effect of dispersal among populations. Since ecological systems are typically subject to large spatially varying perturbations whi...
متن کاملProductivity, dispersal and the coexistence of intraguild predators and prey.
A great deal is known about the influence of dispersal on species that interact via competition or predation, but very little is known about the influence of dispersal on species that interact via both competition and predation. Here, I investigate the influence of dispersal on the coexistence and abundance-productivity relationships of species that engage in intraguild predation (IGP: competin...
متن کاملA Simultaneous Test of Synchrony Causal Factors in Muskrat and Mink Fur Returns at Different Scales across Canada
BACKGROUND Synchrony among populations has been attributed to three major hypotheses: dispersal, the Moran effect, and trophic-level interactions. Unfortunately, simultaneous testing of these hypotheses demands complete and detailed data, which are scarce for ecological systems. METHODOLOGY/PRINCIPAL FINDINGS Hudson's Bay Company data on mink and muskrat fur returns in Canada represent an exc...
متن کاملIntense or Spatially Heterogeneous Predation Can Select against Prey Dispersal
Dispersal theory generally predicts kin competition, inbreeding, and temporal variation in habitat quality should select for dispersal, whereas spatial variation in habitat quality should select against dispersal. The effect of predation on the evolution of dispersal is currently not well-known: because predation can be variable in both space and time, it is not clear whether or when predation ...
متن کاملDynamical behavior of a stage structured prey-predator model
In this paper, a new stage structured prey-predator model with linear functional response is proposed and studied. The stages for prey have been considered. The proposed mathematical model consists of three nonlinear ordinary differential equations to describe the interaction among juvenile prey, adult prey and predator populations. The model is analyzed by using linear stability analysis to ob...
متن کامل